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The Rayleigh-Bénard instability of a horizontal shear flow in a narrow channel is governed by two
competing unstable modes: traveling transverse and stationary longitudinal convection rolls. The dy-
namics of the mode amplitudes obeys two coupled Ginzburg-Landau equations, which we derive in the
present article. For mathematical simplicity we assume free-slip boundaries at the channel sidewalls.
The analytical discussion and the numerical simulation of these amplitude equations show transitions be-
tween the two convective structures. Propagating fronts, which separate areas of transverse rolls and
longitudinal ones, occur in the parameter range where both patterns are stable. Coexisting uniform
states with nonzero amplitudes of both modes are unstable solutions of the equations. Results are in

qualitative agreement with recent experiments.

PACS number(s): 47.20.Bp, 47.20.Ky, 47.60.+1i

I. INTRODUCTION

The purpose of this paper is to investigate the non-
linear dynamics of fluid flowing down in a long narrow
channel heated from below. Historically, this problem
was motivated by the observation of cloud streets in the
earth’s atmosphere [1]. Here, cold air (wind) is heated by
the ground and forms convection rolls oriented parallel
to the prevailing wind direction. The convection is visu-
alized when the warm air cools and the water vapor it
contains condenses into clouds along the up-flow boun-
daries. However, the present interest in this phenomenon
transcends the original historical context and concen-
trates on the more general problem of pattern formation
in nonlinear systems. It turns out that the thermogravi-
tational instability of a horizontal fluid layer [Rayleigh-
Bénard convection (RBC)] combined with the stability
problem of a laminar shear flow (Orr-Sommerfeld prob-
lem) leads to interesting bifurcation behavior [2]. This is
due to the interplay of transport and instability arising
from the convective nature of the primary bifurcation and
the absolute instability at higher Rayleigh numbers [3].

Experimentally, RBC can be precisely controlled and
measured in the laboratory. Depending on the width of
the channel and the through-flow rate one observes either
traveling convection rolls with axes perpendicular to the
flow [transverse rolls (TR)] or stationary rolls with axes
aligned in the streamwise direction [longitudinal rolls
(LR)]. Most experimental work deals with either of these
structures [4—7]. Only recently, experimental investiga-
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tions of the transition between TR and LR showed coex-
istence and/or time-dependent states [8,9].

The linear stability of the problem is well known. In a
fluid layer without lateral boundaries, it has been shown
[10, 11] that the onset of convection always occurs in the
form of stationary LR. When the influence of sidewalls is
taken into account [12], the preferred pattern in a narrow
channel with a weak shear flow consists of traveling TR.
With stronger flows, the effect of the walls is overcome
and the rolls switch their axes to again align with the
flow. Brand, Deissler, and Ahlers [13] have studied this
nonlinear problem by examining a phenomenological
model of two coupled envelope equations for LR and TR.
Several of their findings are in qualitative agreement with
the experimental observations [8,9].

In this article we derive the envelope equations sys-
tematically from the basic hydrodynamic field equations.
Following the work of Miiller, Liicke, and Kamps [14],
who determined the amplitude equation for TR, we cal-
culate the corresponding equation for the LR mode and
the nonlinear coupling terms that govern the competition
between the two states. It turns out that the equations
are of a different structure than assumed by Brand,
Deissler, and Ahlers [13]. An important objective of this
publication is to present the derivation of these amplitude
equations and to provide numerical values for their
coefficients. We discuss the nonlinear solutions analyti-
cally and investigate their stability. Finally we present
numerical simulations which have relevance to the stabil-
ity analysis and the experimental findings.

263 ©1993 The American Physical Society
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II. GOVERNING EQUATIONS

We consider a viscous incompressible fluid layer of
thickness 4 confined between two rigid perfectly heat
conducting horizontal planes. To describe the geometry
we use Cartesian coordinates (x,y,z) with unit vectors e,,
e,, e,. The origin is located at the lower boundary and
the z axis is directed vertically upwards. We shall exam-
ine the flow which is generated by a constant temperature
difference AT between the planes and by an applied con-
stant pressure gradient 3 in the negative x direction. The
coordinates, time, velocity, pressure, and temperature are
made dimensionless by scaling with h, h2/k, k/h,
pokv/h?, and AT, respectively, where x is the thermal
diffusivity, v the kinematic viscosity, and p, a reference
density.

By using the Boussinesq approximation, the Navier
Stokes, continuity, and heat equations admit a time-
independent solution with velocity U (plane Poiseuille
flow), pressure gradient VP, and temperature gradient VT
according to

U=coReU(z)e, , U(z)=6(1—2z)z, (2.1a)
Ra

VP=—120 Reex—m(lﬂ—yATz)ez , (2.1b)

VI=—e, . (2.1¢)

Here o is the Prandtl number, Re the Reynolds number,
and Ra the Rayleigh number defined by

o=k/v, Re=U,h/v, Ra=ygh’AT/(kv), (2.2)

where U,,=Bh?/(12pyv) is the averaged velocity of the
Poiseuille flow, y is the coefficient of thermal expansion,
and g is the acceleration of gravity. Note that (2.1) be-
comes the familiar conduction state in RBC as Re— 0.

To investigate the problem when the base flow solution
(2.1) is unstable, we superimpose perturbations of velocity
v=(u,v,w), pressure p, and temperature 6 and obtain
from the hydrodynamic equations:

é(a, +v-V)v+Re(Ud, v+(3, U)we, )
=—Vp+Rabe,+V?v, (2.3a)

(9, +v-V)0+0 ReUd,0—w=V?0, (2.3b)

V-v=0, (2.3¢)

with the realistic no-slip boundary conditions at the top
and bottom
u=v=w=6=0 at z=0,1. 2.4)
There are two instability mechanisms of the base flow
(2.1), giving a nonzero solution of Egs. (2.3). One is the
so-called Tollmien-Schlichting instability [15], which
occurs for large values of Re and Ra <1708. The second
type is the Rayleigh-Bénard instability [16] for values of
Ra larger than 1708. In this paper we consider the latter

case and discuss weakly nonlinear solutions for small
through-flow rates.

III. LINEAR STABILITY ANALYSIS

The linear stability analysis of the basic state (2.1) has
been carried out [10,11] for a fluid layer of infinite lateral
extension by considering linear solutions of Egs. (2.3) of
the form

[v,p,0]1=[9(z),p(2),0(z) e’ *xtlr—ot) (3.1)

Here G,ﬁ,é\ are z-dependent eigenfunctions, w is the fre-
quency, and q=(k,/) is the wave vector with com-
ponents k and [/ in the x and y directions, respectively.
The onset of instability is determined by imposing  to be
real. If a solution in form of TR, i.e., q=(k%,0), is con-
sidered, the roll axes are orthogonal to U and the neutral
values for Ra and o are functions of k, Re, and o. For
given values of Re and o the minimum value Ra! of Ra
occurs at wave number k, and frequency w!. For 0 =5.8
and Re up to unity we have fitted these values to polyno-
mials in Re and found

Ral=Ra,,+Ra,Re’+O(Re*) , (3.2a)
k.=k.+k,Re?+0(Re*), (3.2b)
ol'=w.,Re+w, Re*+0(Re’) . (3.2¢)

Here Ra q and & are the critical values known from the
Rayleigh-Bénard problem [16]. The values of the expan-
sion coefficients Ra,, k,, ., and w_; are listed in Table
I

By use of Squire’s theorem [10,11,17] one obtains from
the expansions (3.2) the critical values for any other la-
teral wave vector q by substituting g, for k. and (k /q)Re
for Re, where ¢=(k%+1%)!/2, For a LR pattern, i..,
k=0 the onset of instability is stationary and indepen-
dent of Re, and one finds

Ral=Ra,, I,.=k,, of=0. (3.3)

The critical Rayleigh number for oblique rolls attains a
value between Ra! and RaZ, depending on the orientation
of the roll axes in the horizontal plane.

Figure 1 gives a schematic sketch of the critical values
of Ra for TR and LR as functions of the Reynolds num-
ber. For convention we have introduced the reduced
Rayleigh number €, defined by

e=Ra/Ra,—1 . (3.4)

The solid lines indicate the stability boundaries for a fluid
layer of infinite lateral extension. The dashed lines
denote the corresponding thresholds if the fluid is
confined between sidewalls parallel to the Poiseuille flow.
It has been shown theoretically [12] and experimentally
[8,12] that sidewalls stabilize the basic state (2.1): the
critical values of Ra increase with decreasing distance be-

TABLE 1. Values of the expansion coefficients for the critical
stability quantities Ra7, k., and o7 in (3.2) for a Prandtl number
of 0 =5.8.

Ra,,=1707.762
k.o=3.116
. =23.1709

Ra,,=15.5528
k.= —0.00695
We3=—0.04647
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FIG. 1. Sketch of the linear stability boundaries for a fluid
layer without (solid) and with (dashed) lateral sidewalls. The
conductive state (2.1) is unstable with respect to traveling trans-
verse rolls (TR) at € > €] and unstable to stationary longitudinal
rolls (LR) at €>e€L. Re* denotes the codimension two point.
The stabilization of the conductive state due to sidewalls de-
pends on the distance between them.

tween the sidewalls. An interesting feature at small
values of Re is that the stabilization is more effective for
LR than for TR. This gives that €/ and €’ intersect at a
nonzero value of Re, which we identify as Re*. Close to
this codimension two point the dynamics of the compet-
ing traveling TR and stationary LR leads to interesting
convection behavior.

IV. WEAKLY NONLINEAR THEORY

In this section we derive the coupled nonlinear ampli-
tude equations for TR and LR. Our objective is to pro-
vide a theoretical model for the competitive dynamics be-
tween the two flow patterns in a narrow infinite long
channel. Due to the presence of the sidewalls a rigorous
treatment of the problem requires a numerical analysis in
two spatial dimensions (y and 2z), e.g., by a two-
dimensional Galerkin method. However, to keep the
mathematics as simple as possible we consider free-slip
boundary conditions at the sidewalls and impose the dis-
tance in between to be a small integral multiple of 27 /I,
(equal to critical wavelength for a fluid layer without la-
teral boundaries). The mathematical model therefore is
defined by Egs. (2.3) and (2.4). In order to incorporate
the stabilizing influence of the sidewalls we do not use the
stability curves €/(Re) and €~ for a fluid of infinite lateral
extension since they intersect at Re*=0. Instead, we
take ad hoc values giving a codimension two point at
Re* >0 (c.f. Fig. 1). Additional sidewall effects (e.g., de-
formation of the eigenfunctions in narrow channels) are
ignored.

We shorten the notation by casting Egs. (2.3) into the
form

Le=N(p,p) . 4.1)

Here L is a linear 8 X8 matrix operator defined in the
Appendix, and the eight-dimensional vectors

¢=(u,v,w,0,0,u,0,v,p,9,0)", (4.2a)

N(¢7,¢p)=%(v-V)(0,0,0,0,u,v,—w,aO)’ R (4.2b)
represent the solution and the quadratic nonlinearity.
The superscript ¢ denotes the transpose.

From the nonlinear solution of the Rayleigh-Bénard
problem it is known [18] that the convective amplitude is
of O(8) when €e—¢€.=0(8%). Moreover, from the form of
the neutral curve in the (g,€) plane it follows that those
disturbances are excited whose wave numbers g are lying
within a band of O(8) around the critical value g.. The
bandwidths Ak and Al in the x and, respectively, the y
direction depend on the geometry of the channel and the
orientation of the roll pattern under consideration. In a
narrow infinitely long channel, with the y axis parallel to
the short side, slow variations in y directions do not ap-
pear so that A/ =0 is enforced. The value of Ak is given
by the restriction g=gq.+O0(8). Here, one finds
Ak=0(8) for a pattern of TR and Ak=0(8'?) for a
pattern of LR. The interaction of the modes within these
wave-number bands leads to slow spatial and temporal
variations of the nonlinear convection. In order to ac-
commodate these variations the amplitudes are taken to
be slowly varying functions [19,20] of x and . We there-
fore adopt the method of multiple scales [21] by defining

3,«-0,+8V2y, ,+837,+8% 73+ -+, (4.32)
0,0, +8'20y, ,,+80y+8%0y3 p+ -+ . (4.3b)

For small supercritical values of € we are led to seek solu-

tions of Eq. (4.1) by the expansion
P=8¢,+8 @3, +8p,+ - - - . (4.4)

By using (4.3) and (4.4) we also expand L and N in powers
of § as

L=Ly+8?L,,,+8L,+ -+,
N=8N,+8?Ns,,+8N;....

(4.5a)
(4.5b)

The matrix L, follows from L simply by taking Ra at its
critical value; the full effect of the Rayleigh number is
reobtained in L,. The matrices L; and the vectors N; are
defined in the Appendix. By introducing the expansions
for L, ¢, and N into Eq. (4.1) the following hierarchic set
of linear equations [up to O(8%)] is obtained:

Lop,=0 [0(8)], (4.6a)
Lopsn=—L, e, [0(87)], (4.6b)
Lop,=—L, ¢35, Lip1tN, [0(8%)], (4.6¢)

Lops=—Lip¢2—Li¢3p~Lypgi+Ns, [0672)],
(4.6d)

Lops=—L,,,@s,,—L1@,—L3,,03,,—Lp T N;

[0(8%)]. (4.6¢)

Any solution vector @; has to fulfill the boundary condi-
tions (2.4), giving

(D= (2=

P;TP; 4.7)

¢>§-3)=<p§~4)=0 at z=0,1,
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where <p§-i ) denotes the ith component of the vector @ ;e

The leading-order Eq. (4.6a) defines the linear stability
problem, and we consider a solution composed of down-
stream traveling TR and stationary LR:

@ =AY 4(2)e! 7L BH(2)eP+c.c. (4.8)

A set of TR propagating in the counterflow direction
does not appear since the spatial x — —x symmetry is
broken by the through flow.

Due to the different bandwidths Ak for TR and LR the
amplitudes A and B are supposed to depend on the slow
time and space coordinates (X;,T,,X,,T,,...) and
(X1,5T,»,X,T,,...), respectively. To shorten nota-
tion we write k, /, o instead of the critical quantities k.,
I., . The two eigensolutions § ,(z) and @p(z) are gen-
erated numerically (using a shooting scheme) by solving
the stability problem (4.6a) separately for TR and for LR
(with Ra=Ra! and, respectively, Ra=Ra’ in L,). Con-
sequently, the natural expansion parameter is e—¢! for
transverse rolls and e —e’ for longitudinal rolls. To or-
ganize the expansion procedure consistently, and to
match the cross coupling between TR and LR in O(8%),
we assume

O(e—e=0(e—€L)=0(8?) . 4.9)

This implies O(e/—€X)=0(8%), meaning that any non-
linear solution giving coupling between TR and LR is
valid in a 82 neighborhood of the codimension two point
Re*, where € and €’ intersect.

On solving system (4.6) iteratively, we find that the
slowly varying amplitudes are governed by the following
Ginzburg-Landau equations:

74d,+v,40,)A=[(e—e)(1+icy)+E%(1+ic,)d?
—(14ic,y)| A]?
—B 4(1+icy)|B|?]14 , (4.10a)
75(d, v, )B=[(e—€l)+£432 +xp03 —A,0%
—|B|*—Bgl 4|*1B . (4.10b)

Table II presents fit formulas of the coefficients for Re up
to unity and o =5.8. The coefficients appearing on the
right-hand side of (4.10a) are complex because the TR in-
stability of the basic conductive state is oscillatory.
Apart from the nonlinear coupling term |B|? 4 this equa-
tion has previously been derived by Miiller, Liicke, and
Kamps [14].

TABLE II. List of the linear and nonlinear coefficients of the
amplitude equations (4.10) for a Prandtl number of o =5.8.

7, =0.0554+0.000 07 Re?
v,=17.507Re
£,=0.1482-+0.001 16 Re?
B =1.2486-+0.0025 Re?

¢co=0.0187Re
c;=0.0382Re
c,=—0.0030Re
¢3;=—0.0450Re

75 =0.0554—2.7 10~® Re?
£,=0.0010 Re?
B =1.2486+0.0012 Re?

vp=7.435Re
x5 =0.00021Re
Ap=0.0038+0.00001 Re?

The amplitude equation for B is new; it possesses pure
real coefficients. This is a general consequence of the sta-
tionary LR instability and the reflection symmetry of the
system at the midplane between the sidewalls. Indeed,
the transformation y — —y in (4.8) forces the evolution
equation (4.10b) to be invariant under B— B*. In the ab-
sence of through flow (Re=0) the lowest-order nonvan-
ishing gradient term 3%B dominates the spatial depen-
dence of B. As soon as the flow is turned on the anisotro-
py in the x direction creates a first-, a second-, and a
third-order space derivative. It can be seen from Table II
that the correction due to the 33 term is always negligible
in comparison to the advective term vzd, B (at least in
the range of validity of the envelope equations, where
Ak <<k,). By virtue of the [x ——x, Re— —Re] sym-
metry the second-order coefficient £ increases propor-
tional to the square of Re. For a typical flow rate of
Re=~0.5 it follows from Table II that the modulational
dynamics on spatial scales slower than Ak =~0.25 is al-
ready governed by the second-order derivative. This has
been pointed out by Brand, Deissler, and Ahlers [13];
however, in their model they ignored the Re dependence
of £% and assumed a numerical value being two orders of
magnitude higher.

On the other hand, when we solve Egs. (4.10) numeri-
cally (Sec. VI), the derivative terms become large in the
inlet and outlet regions of the channel, or in the transi-
tion zones between TR and LR. This corresponds to
modulational wave numbers with large imaginary parts.
Likewise, when examining the boundary of absolute in-
stability (Sec. V), the fourth-order derivative term in
(4.10b) dominates the second derivative for Re=1. We
therefore include all terms of Eq. (4.10) in the following
discussion.

The most important difference between the envelope
equations (4.10) and the phenomenological model of Ref.
[13] concerns the nonlinear coupling coefficients 3 , and
Bg. These are substantial for the predicted pattern com-
petition (see below). According to Table II the values of
B 4 and By weakly depend on Re so that they are well ap-
proximated by the Re=0 expression. Due to the rota-
tional symmetry in the lateral plane the identity 8, =3
must hold in the absence of through flow. In addition,
the appearance of rolls instead of squares [22] in RBC im-
plies that B, =[5 >1. These arguments have not been
addressed by Brand, Deissler, and Ahlers [13], who as-
sumed the values 3 ,=0.75 and Bz =1.5 to achieve re-
sults compared with the experiments [7,9].

V. ANALYTICAL SOLUTIONS
AND THEIR STABILITY

A. Absolute versus convective instability
of the conductive state

The critical stability boundaries €/ and €. mark the
thresholds above which the basic conductive state
A =0=B becomes convectively unstable to perturbations
in the form of TR and LR, respectively. Any localized
initial disturbance is amplified in a comoving frame of
reference but dies out at a fixed location. Convective
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rolls therefore cannot grow globally and the system re-
turns to the basic state. By virtue of the through flow the
absolute instability thresholds €} and ek, for which
small localized perturbations are growing at any position,
is shifted to higher values of €. In the context of
Ginzburg-Landau equations this problem has first been
discussed by Deissler [23]. Upon solving the linearized
amplitude equation (4.10a) for an initial pulse 8(x)
(Dirac’s & function) the responding TR amplitude is
found to be

(e—€l(1+icy)t

1
A(x,t)x tl/zexp(

&%
(x —v 74t /E4)?
- AT4t /54 (5.1)
4(1+1C1)t
This solution is exponentially growing for
(e—eN(1+c?) vty |2
g—< L |44 |50, (5.2)
&4 t §4

By letting x fixed and ¢ — o it follows that the basic state
becomes absolutely unstable if

(v 74)?

T
4(1+c)E,

€> € =€+ : (5.3)
and convectively unstable for € < e <€l

We then pose the same initial value problem for the
linearized version of the LR equation (4.10b). Using the
method of steepest descent one finds the asymptotic solu-
tion for x fixed and ¢ — « as [24]

Bixi)e 1 (e~ecL)t 3 |vath 1/3t
ANV R S 8y | 47, ‘

(5.4)

Thus perturbations in the form of LR become absolutely
unstable if

4 4 1/3
BTB
e>eh =el+2 ~——4}\B , (5.5)

and convectively unstable for - <e<ek .

Figure 2 shows the bifurcation boundaries €'~ and e;;X
for the onset of convective and absolute instability.
These lines are important to understand the numerics dis-

J

FIG. 2. Stability curves in the e-Re control parameter plane:
For el'f<e<ell (ehl <e€) the basic conductive state (2.1) be-
comes convectively (absolutely) unstable to perturbations in the
form of traveling TR or stationary LR, respectively. For €< el
(e <€kg) the uniform traveling TR state (stationary LR state)
becomes unstable to perturbations in form of LR (TR) (see Sec.
V for details). The values €=0.07 Re? and €-=0.02 have been
taken to obtain a codimension two point at Re* =0.5.

cussed in Sec. VI. In the convectively unstable region
any initial perturbation is carried away by the through
flow so that a continuous source of perturbations is re-
quired to sustain permanent convection [23,25]. To take
into account the effect of the sidewalls, which stabilize
TR at small Re, we have taken €/=0.07Re’ and
€£=0.02. These ad hoc values give a codimension two
point at Re*=0.5 as in the experiments of Ouazzani,
Platten, and Mojtabi [8].

B. Stability of nonlinear solutions

Here we discuss uniform nonlinear solutions 4, and B,
of the coupled Ginzburg-Landau equations (4.10) of the
form

A=Ay, B,=B,, (5.6)

where A4, By, and ) , are constants. To examine their
stability we introduce space- and time-dependent pertur-
bations a(x,?), b(x,t), and substitute 4= A4 +a and
B=B +b into (4.10). Subtracting the equations for the
uniform solutions and linearizing in a and b gives the per-
turbation equations:

7 4(9,+v 40, )a=[(e—€N(1+icy)+E4(1+ic,)d2 Ja—(1+ic,y) (2| A,|?a+ A2a*)

—B (1+ic;)|Bs1%a+ A,B¥b+ A,Bb*) ,
75(3, +vpd, )b =[(e—€r)+£302 +xd3 —Apdt1b—(2|B;|?b+B2b*)—Bp(| A,|*b+ A*B,a+ A, B.a*) ,

These equations possess separable solutions of the form

ilax+o;t) —ilax+o;t), iQ 4t

Je ,
),

ot
a=e "(ae +a,e

ilax+o;t —ilax+o;t) 5.8

b=e"""(be '+be

(5.7a)
(5.7b)

[

and result in a quartic characteristic equation for the
complex eigenvalues o =o,+io;. We define a given
solution Ay, B; as stable if all four values of o, are non-
positive for any real wave number a. The perturbations
(5.8) represent a general stability analysis of the solution
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(5.6) going beyond the investigation of Ref. [13], where
pure real amplitude equations and space-independent dis-
turbances (@ =0) have been considered. By inserting (5.6)
into (4.10) we immediately find three different solutions:
pure TR, pure LR, and coexistence of TR and LR (also
called ‘“mixed” states in Ref. [13]), which will be dis-
cussed by turns below.

1. TR pattern
Convection in the form of traveling TR is given by
|dy12=e—€l', 7,Q,=(co—cy)|4,1*, |Byl*=0.
(5.9)

This solution corresponds to a perfectly periodic TR pat-
tern with wave number k., and frequency (w,—Q 4).
Note that Q , represents a nonlinear frequency correc-
tion.

The characteristic equation, which determines the sta-
bility of TR, separates into two quadratic equations for a
and b. It turns out that a always is damped, whereas b is
exponentially amplified if

T30, =€—eb—a’Ey —a*ly—Bl 441*>0.  (5.10)
Since the fastest growing perturbation appears at a=0
the TR pattern becomes unstable to LR perturbations by
a long-wavelength instability at

e<elp=e€l+(ef—€k)/(Bp—1) . (5.11)

This stability analysis has demonstrated that the uni-
form TR solution (5.9) is stable in a region of the (€,Re)
plane where € > max{e/, e/} (see Fig. 2). Here max{e’,
€fr} denotes the largest value of €7 and €{i. The numer-
ics in the next section will prove that the boundary €} is
indeed responsible for nonlinear transitions between TR
and LR in the region Re > Re*.

2. LR pattern

The solution
| 4,12=0, Q,=0, |Byl>=e—¢t (5.12)

corresponds to a stationary LR pattern with wave num-
ber /.. Also for this solution the characteristic equation
of the stability problem separates, giving always a nega-
tive growth rate for b. However, the temporal growth ex-
ponent of the TR perturbation a becomes positive for

T40,=€e—el—a’t% —B Byl . (5.13)

As before, the fastest growing perturbation has a=0, so
that the LR pattern becomes unstable to TR perturba-
tions if

e<ekp=el+(ek—eN/(B,—1) . (5.14)

The stable region of the uniform LR solution, given by
€>max{el ekz}, is shown in Fig. 2. The following nu-
merical section will confirm that a nonlinear transition
from LR to TR appears at ek if Re < Re*.

We mention that our €f; coincides formally with the

expression €, of Brand, Deissler, and Ahlers [13] and our
€Ly coincides with their €. However, due to the different
choice of the nonlinear coupling coefficients 3, and Bp
the curve of €5 happens to appear close to our €y and
the threshold e, does not play a role in the stability dia-
gram of Ref. [13].

3. Coexisting TR-LR pattern

When both amplitudes A4, and B, are nonzero, the
corresponding uniform solution

(BABB_1)|A()‘z:ﬁA(é—Eﬁ‘)_(E_ecT) s

(B4Bg—1)|Bo|*=PBgle—el)—(e—¢€b) (5.15)
74Q =cole—€l)—c,y| Ag1*—c3B4|BoI*,
leads to real values of [A4y|*> and |By|* for

€>max(eky,efy). However, by examining the stability
we find that one of the eigenvalues always has a positive
real part. For example, perturbations with =0 have the
growth rate

T40,=—(|4,*+|By|?)
+[(1 40>+ [Bo|>)*+(B 4B — DI 4|Bo|*]'/> .
(5.16)

Since the derivation of the coefficients has shown that
B 4Bp>1 the “mixed” pattern (5.15), consisting of uni-
form TR and LR at the same location, is predicted to be
unstable. This result also explains why the numerical
simulations of Brand, Deissler, and Ahlers [13] did not
show uniform coexisting solutions for 8,8z =1.125, but
they did for B 85 =0.7.

The next section presents some characteristic comput-
er runs with the coupled Ginzburg-Landau equations.
On the basis of our analytical discussion we expect uni-
form solutions of either TR or LR. Coexisting “mixed”
states with nonzero amplitudes of TR and LR at the
same location are expected—if at all—only for short-
time intervals or over small distances.

VI. NUMERICAL SIMULATIONS

In this section we describe the results of two represen-
tative computer simulations with the coupled Ginzburg-
Landau equations (4.10). To integrate the partial
differential equations we use a finite difference Crank-
Nicholson scheme with a spatial grid size of Ax =0.25
and a time resolution of Az=0.1. The length of the
channel is imposed to be 100. The stabilizing influence of
sidewalls, which favors TR to occur at small Re, is con-
sidered by taking the ad hoc stability boundaries eCT and
€L shown in Fig. 2. These values give a codimension two
point at Re*=0.5 in accordance with the experiment [8].
In order to guarantee permanent convection in the con-
vectively unstable parameter region it is necessary to pro-
vide small but persistent inlet perturbations (reflecting en-
trance turbulence or other experimental noise) [23,25].
Since we do not perform any statistical evaluation of our
numerical results we simply impose—instead of taking
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noise—the following temporally constant inlet boundary
conditions

A=0.001(e—e)'"?, B=0.001(e—€)'2. (6.1)

These values correspond to 0.1% of the respective satura-
tion amplitudes. We emphasize that there is no informa-
tion available about the actual experimental noise level in
Ref. [8]. Moreover, it is not even clear that the inlet per-
turbations for 4 and B should be of the same order of
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magnitude. The values taken in (6.1) are therefore to be
regarded as a first guess. Control runs with ten times
smaller or greater inlet amplitudes gave quantitative
modifications in the convectively unstable parameter re-
gion (e.g., displacement of a TR-LR transition) but no
qualitative changes of the dynamics occurred. This is
also in accordance with the prediction that the noise
strength enters with the logarithm of its intensity
[13,23,25]. For absolutely unstable parameters the sys-
tem is insensitive to small external disturbances [13,14].
The remaining boundary conditions are

(a)

|A] and [B|
o O © o

|A| and |B|
o ©O O o
oi-NuL ok M W e

FIG. 3. Envelope 4| for TR (solid line)

and |B| for LR (dashed) as a function of the
streamwise coordinate x. The Rayleigh num-
ber is kept constant at €=0.2; the flow rate Re
increases from (a) to (f). In some cases the

|A] and |B|

two-dimensional density plots of the corre-
sponding convection patterns (top view) are
also given. (a) Stationary state of traveling TR
with small LR contributions at the cell aper-
tures at Re=0. (b) Transient state at Re=0.1.

The front of a LR pattern invades in the down-
stream direction (see arrow) into the TR state.
(c) Transient state at Re=0.25. A new TR

|A} and |B|
© O o o

front develops near the inlet and travels down-
stream. The leading LR front [same as in (b)]
has not yet reached the outlet. The trailing
TR front travels faster than the leading LR
front (see arrows). (d) Re=0.75, stationary
state of traveling TR close below €]y, the tran-

sition to LR. A small contribution from the

© © o o
DY

.

|A] and |B|

O R D WA O FH N W »

LR pattern is already visible. (e¢) Re=0.82,
stationary LR state close above this transition.
The small remaining TR contribution dies out
when the flow rate is increased further on. (f)
Pure stationary LR pattern at Re=1.5. The
distance from the inlet over which the en-

velope saturates increases with Re. The pat-

terns of (d)—(f) exist in the convectively unsta-

|A] and |B|

ble parameter region (c.f. Fig. 2) since they are
sustained by the inlet forcing (6.1).
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A=B=0 (at outlet) ,
(6.2)
9,B=0 (at inlet and outlet)

(recall that the amplitude equation for B is of fourth de-
gree).

The first numerical experiment is a careful increase of
the flow rate Re keeping €=0.2 constant. At the begin-
ning of the run the envelopes 4 and B have been initial-
ized by small random numbers. For Re=0 the linear
temporal growth rate of A4 overwhelms that of B
[(e—eD) /7, >(e—€k) /T3], so that the TR mode wins
the competition and the system saturates in an extended
traveling TR state [Fig. 3(a)]. This state remains stable
until Re=0.07, which is in agreement with the experi-
mental finding that TR patterns appear close to the € axis
(see Fig. 18 of Ref. [8]: region II). For Re slightly greater
than 0.07 the front of a LR pattern invades at the chan-
nel inlet and propagates downstream into the TR state
[Fig. 3(b)]. Increasing Re accelerates the front velocity,
redecreasing slows it down again. For a Reynolds num-
ber below 0.07 the front propagates upstream. By care-
fully adjusting Re close to this transition value the front
stops at its momentary position and TR and LR coexist
in different areas of the convection cell. For
0.07 <Re <0.25 the final state is achieved when the LR
front has reached the outlet and the former traveling TR
pattern is substituted by a stationary LR structure.

This LR pattern in turn becomes unstable above
Re=0.25 by a traveling TR structure whose front in-
vades at the entrance of the cell. Figure 3(c) shows a situ-
ation where this TR front is already entering at the inlet
before the aforementioned LR front has reached the out-
let. Both leading and trailing fronts are propagating
downstream with different velocities as indicated by the
arrows. The resulting long-time structure is a homogene-
ous traveling TR pattern as for Re <0.07.

The experiments of Ouazzani, Platten, and Mojtabi [8]
did not show TR-LR transitions near Re=0.07 and
Re=0.25; there the TR pattern persisted until Re==0.8
and a crossover to LR appeared only above this value
(c.f. Fig. 18 of Ref. [8]: transition from region IV to III).
Upon increasing Re beyond =0.8 in our simulations we
observe a third transition from TR to LR in a narrow Re
interval close to €/ [Figs. 3(d) and 3(e)]. This threshold
corresponds to the analytically predicted TR-LR transi-
tion at €/ (see Sec. V and Fig. 2), where an extended TR
state becomes unstable against LR perturbations. The
exact location of this transition in the e-Re control pa-
rameter plane slightly depends on the strength of the in-
let forcing (6.1). By ramping Re back and forth we
verified this crossover to be free of a hysteresis as in the
experiment [8]. The time dependence of the vertical ve-
locity field w (at x =40, say) belonging to the envelopes
shown in Fig. 3(e) consists of a strong DC signal (from
the stationary LR pattern) superimposed by a small AC
offset from the weak traveling TR contribution. The
similarity to the experimental laser Doppler signal of Ref.
[8] (see their Fig. 7) is striking. Note that the model of
Brand, Deissler, and Ahlers [13] predicts this transition
to appear close to their €5, which corresponds to our ekg.
This difference arises since they used a coupling

coefficient B 4 =0.75 being smaller than unity.

Figure 3(f) shows that the TR contribution totally dies
out when the flow rate is increased further on. Simul-
taneously the saturated LR pattern is pushed more and
more out of the container. The structures shown in Figs.
3(d)-3(f) exist in spite of the convectively unstable param-
eter conditions (€ <eXL). They are sustained by the finite
entrance forcing (6.1) [23,25] since they die out as soon as
(6.1) is replaced by a homogeneous boundary condition.

In the second simulation run we vary € at the fixed
through-flow rate Re=0.1 to test the theoretically pre-
dicted LR-TR transition at ekz (c.f. Fig. 2). Starting
from the fully developed stationary LR state at €=0.2
and Re=0.1 [Fig. 4(a)] we suddenly decrease € to 0.08,
i.e., below the threshold efg(Re=0.1)=0.1. As can be
seen from Fig. 4(b), a TR front develops in the entrance
region and invades into the LR state. By returning to
€=0.2 one obtains a new LR front [Fig. 4(c)]. In con-
trast to the situation presented in Fig. 3(c) the slower LR
front now follows the faster TR front. As before, accu-
rate adjustment of the Rayleigh number close to ek
brings the trailing front to a halt or makes it propagating
in the upstream direction for e<ekz. This transition,
showing no hysteresis in our simulations, is not in com-
plete accordance with the experiment [8]. There, a cross-
over from TR to LR by increasing € has also been ob-
served, but the corresponding back transition was not.
Brand, Deissler, and Ahlers [13] do not predict any non-

|Al and |B|
o O O o

|A] and |B|
o
=
[5,]

o O ©o o
. D

|A| and |B|

o P N W

[EEppypp—,

Position x

FIG. 4. Same as Fig. 3 but for fixed flow rate Re=0.1 and for
different Rayleigh numbers €. (a) Stationary LR state at €=0.2.
(b) Transient state at e=0.08. Since € <ekz=0.1 the LR state is
unstable and a TR front invades (see arrow). (c) Transient state
at €=0.2. After the reincrease back to €=0.2 a new LR front
appears near the inlet. The leading TR front [same as in (b)] has
not yet reached the outlet. Propagation velocities and direc-
tions are indicated by the arrows.
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linear transition at all in the region Re <Re*. On in-
creasing € they observe stable TR up to e=1.

VII. SUMMARY

In the present article we derive the coupled envelope
equations for travelling transverse (TR) and stationary
longitudinal roll (LR) patterns in Rayleigh-Bénard con-
vection with a horizontal flow. Fit formulas of the
coefficients are given for Reynolds numbers up to unity
and a Prandtl number of 5.8. The calculations are per-
formed for an idealized convection cell with rigid top and
bottom plates but free-slip sidewalls. The tendency of the
lateral boundaries to stabilize TR at weak flow rates is in-
corporated into the model by taking ad hoc stability
boundaries. The competitive nonlinear dynamics be-
tween TR and LR strongly depends on the numerical
values of the coupling coefficients B, and Bz. The values
B4=Pp=1.25 we find are reasonably far apart from
those where a qualitative change in the dynamics ap-
pears, i.e., B ,8p <1 [see Eq. (5.16)]. Nevertheless, we
cannot exclude that a rigorous treatment of the sidewall
boundary condition would have led to a qualitative
different model.

In our model coexisting states with nonzero amplitudes
of TR and LR at the same location appear as unstable
solutions of the amplitude equations. The experimentally
observed transition from the extended TR state to the LR
pattern by increasing the flow rate has been analytically
calculated and numerically confirmed. Additional TR-
LR transitions and solutions with propagating fronts be-
tween the two structures have been found in our simula-
tions but not reported in the experiments [8]. This might
be due to the experimental laser Doppler velocimetry
which only allows Jocal measurements but gives no hint
about the global convective structure. Very slow tran-
sients (e.g., slowly traveling fronts) therefore might even-
tually appear as stationary states. Further experimental
work with a flow visualization of the entire convection
cell [9] is necessary to have a better test of the theoretical
predictions.
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APPENDIX

The 8 X 8 matrix operator in Eq. (4.1) is defined by

3, O 0 0 -1 0 0 0
0 9, O 0 0 —1 0
3 93, 9, 0 0 0 0
0 0 0 5, 0 0 0 —1
L=1d, o —Ret;" 0 3, o0 -3, 0 |’
0 d O 0 0 9 -3 O
0 0 —d, —Ra 3 3 9, O
0 0 1 d, 0 0 0 9,
(A1)
where
d1=3i+a§—ReUax—la, ,
7 (A2)

d,=93.+32—0o ReUd, —9, .

The expansion of L in powers of §'/2 is found by inserting
the multiple scale expansions for 9, and 9, and
Ra=Ral"+Ra,(e—e-T), where the term in
parentheses is of order 8

L_o:L)

RaZRaf‘T ’

L,;,=HOr ,,tDy,,
L,=H3r+Ddy+Ed% ), (A3)
L3, =H373,,+D8x3,,+2Edx /29x1 »
L,=H37,+Ddy,+E(371 423y, ,8x3/2)

LT

€—€;
+Ra,;———F

82
Here, H, D, E, and F denote sparse 8 X 8 matrices. Their

nonzero elements are

Hs=Hg=—Hp=—1/0, Hy=—1,

D5 =Dg=—D,3;=20, —ReU , Dg=203,—0cReU,
Dy =—Ds,=D,;5=1, (A4)
EsTEp=—Ep=Egy=1,

F,=—1.

In expanding the nonlinearity N(p,p)=(1/
0)(v-V)(0,0,0,0,u,v, —w,c0)" (the first argument ¢
refers to v and the second to the transposed vector) one
obtains with (4.3b) and (4.4),

N,=N(p,e1),
N3 =N(@,@3,,)+N(p;,2,¢)+(NDT) , (A5)
N3 =N, ;) +N(@3,2,93,,) +N(gy, ) +(NDT) .

Here NDT stands for nonlinear derivative terms with
respect to the slow spatial scales X, ,, and/or X,. Up to
0(8® these terms do not contribute to the amplitude
equation because their x and y dependencies are not in
resonances with the adjoint solutions.
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FIG. 4. Same as Fig. 3 but for fixed flow rate Re=0.1 and for
different Rayleigh numbers €. (a) Stationary LR state at e=0.2,
(b) Transient state at e=0.08. Since € < €5z =0.1 the LR state is
unstable and a TR front invades (see arrow). (c) Transient state
at €=0.2. After the reincrease back to €=0.2 a new LR front
appears near the inlet. The leading TR front [same as in (b)] has
not yet reached the outlet. Propagation velocities and direc-
tions are indicated by the arrows.



